On multi-color partitions and the generalized Rogers-Ramanujan identities
نویسندگان
چکیده
Basil Gordon, in the sixties, and George Andrews, in the seventies, generalized the Rogers-Ramanujan identities to higher moduli. These identities arise in many areas of mathematics and mathematical physics. One of these areas is representation theory of infinite dimensional Lie algebras, where various known interpretations of these identities have led to interesting applications. Motivated by their connections with Lie algebra representation theory, we give a new interpretation of a sum related to generalized Rogers-Ramanujan identities in terms of multi-color partitions. ∗Research supported in part by NSA grant MDA 904-97-1-0062 and NSF grant DMS-9701755 at MSRI. †Research supported in part by NSA grant MDA 904-00-1-0042. ‡Research supported in part by NSF grant DMS9622772 and NSA grant MDA 904-00-1-0059
منابع مشابه
Rogers - Ramanujan Identities for n - Color Partitions
Recently, many q-identities from Slater’s compendium [S] have been interpreted combinatorially by several authors (e.g., see Connor [lo], Subbarao [9], Agarwal [l], and Agarwal and Andrews [2]). In his very recent paper [6], Andrews gave combinatorial interpretations of the Gessel-Stanton q-identities in terms of two-color paritions and expressed the hope that other q-identities such as those i...
متن کاملOverpartition Theorems of the Rogers-ramanujan Type
We give one-parameter overpartition-theoretic analogues of two classical families of partition identities: Andrews’ combinatorial generalization of the Gollnitz-Gordon identities and a theorem of Andrews and Santos on partitions with attached odd parts. We also discuss geometric counterparts arising from multiple q-series identities. These involve representations of overpartitions in terms of g...
متن کاملNew Identities of Hall-Littlewood Polynomials and Rogers-Ramanujan Type
where a = 0 or 1, are among the most famous q-series identities in partitions and combinatorics. Since their discovery the Rogers-Ramanujan identities have been proved and generalized in various ways (see [2, 4, 5, 13] and the references cited there). In [13], by adapting a method of Macdonald for calculating partial fraction expansions of symmetric formal power series, Stembridge gave an unusu...
متن کاملNew Interpretations of Two Analytic Identities 563 2
Two generalized partition theorems involving partitions with " n + 1 copies of n " and " n + 2 copies of n ", respectively, are proved. These theorems have potential of yielding infinite Rogers-Ramanujan type identities on MacMahon's lines. Five particular cases are also discussed. Among them three are known and two provide new combinatorial interpretations of two known ^-identities.
متن کاملBasis partition polynomials, overpartitions and the Rogers-Ramanujan identities
In this paper, a common generalization of the Rogers-Ramanujan series and the generating function for basis partitions is studied. This leads naturally to a sequence of polynomials, called BsP-polynomials. In turn, the BsP-polynomials provide simultaneously a proof of the Rogers-Ramanujan identities and a new, more rapidly converging series expansion for the basis partition generating function....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999